87 research outputs found

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Responsabilidad social universitaria en Maracaibo, Venezuela

    Get PDF
    This article aims to analyze university social responsibility in Maracaibo, Venezuela. The work is based on the postulates of Rodriguez (2010), De la Cuesta (2011) and the Ministry of Education in Spain (2011), among others. It is a descriptive, field study. The population consisted of authorities from five universities, one (1) public and four (4) private, located in Maracaibo, who were accessed through a questionnaire composed of thirty-two (32) closed items. The instrument was validated by experts in the university management field. To determine the questionnaire’s reliability, the test-retest method was applied, obtaining a 0.94 coefficient. To analyze data, the arithmetic mean or average was used. Results indicate that the universities under study exhibit a social responsibility model with an instrumental, entrepreneurial tendency, where knowledge is seen as the main asset available for society’s use. However, a greater integration of these higher education institutions with their stakeholders is required.  El presente artículo tiene como objetivo analizar la responsabilidad social universitaria en Maracaibo, Venezuela. El trabajo se sustenta en los postulados de Rodríguez (2010), De la Cuesta (2011), el Ministerio de Educación de España (2011), entre otros. El estudio fue descriptivo, de campo. La población estuvo conformada por autoridades de cinco (5) universidades, una (1) pública y cuatro (4) privadas ubicadas en Maracaibo, a las cuales se accedió mediante un cuestionario compuesto por treinta y dos (32) ítems cerrados. El instrumento fue validado por expertos en el ámbito de la gerencia universitaria. Para determinar la confiabilidad del cuestionario se aplicó el método test-retest, obteniéndose un coeficiente de 0,94. Para analizar los datos se utilizó el promedio aritmético o media. Los resultados indican que las universidades estudiadas exhiben un modelo de responsabilidad social de tendencia empresarial instrumental, donde el conocimiento se perfila como el principal activo disponible para su uso por la sociedad, pero se requiere una mayor integración de las instituciones de educación superior con sus stakeholders. &nbsp

    Smad7 Sustains Stat3 Expression and Signaling in Colon Cancer Cells

    Get PDF
    : Colorectal cancer (CRC) cells contain elevated levels of active signal transducer and the activator of transcription (Stat)-3, which exerts proliferative and anti-apoptotic effects. Various molecules produced in the CRC tissue can activate Stat3, but the mechanisms that amplify such an activation are yet to be determined. In this paper, we assessed whether Smad7, an inhibitor of Transforiming Growth Factor (TGF)-β1 activity, sustains Stat3 expression/activation in CRC cells. Both Smad7 and phosphorylated (p)/activated-Stat3 were more expressed in the tumoral areas of CRC patients, compared to the normal adjacent colonic mucosa of the same patients, and were co-localized in primary CRC cells and CRC cell lines. The knockdown of Smad7 with a Smad7 antisense oligonucleotide (AS) reduced p-Stat3 in both unstimulated and interleukin (IL)-6- and IL-22-stimulated DLD-1 and HCT116 cells. Consistently, reduced levels of BCL-xL and survivin, two downstream signaling targets of Stat3 activation, were seen in Smad7 AS-treated cells. An analysis of the mechanisms underlying Smad7 AS-induced Stat3 inactivation revealed that Smad7 AS reduced Stat3 RNA and protein expression. A chromatin immunoprecipitation assay showed the direct regulatory effect of Smad7 on the Stat3 promoter. RNA-sequencing data from the Tumor, Normal and Metastatic (TNM) plot database showed a positive correlation between Smad7 and Stat3 in 1450 CRC samples. To our knowledge, this is the first evidence supporting the theory that Smad7 positively regulates Stat3 function in CRC

    Chandra and Magellan/FIRE follow-up observations of PSO167-13: an X-ray weak QSO at z=6.515z=6.515

    Get PDF
    The discovery of hundreds of QSOs in the first Gyr of the Universe powered by already grown SMBHs challenges our knowledge of SMBH formation. In particular, investigations of z>6z>6 QSOs presenting notable properties can provide unique information on the physics of fast SMBH growth in the early universe. We present the results of follow-up observations of the z=6.515z=6.515 radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has been recently proposed to host the first heavily obscured X-ray source at high redshift. We observed PSO167-13 with Chandra/ACIS-S (177 ks), and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 (L2−10 keV<8.3×1043 ergs−1L_{2-10\,\mathrm{keV}}<8.3\times10^{43}\,\mathrm{erg s^{-1}}) is the lowest available for a z>6z>6 QSO. The ratio between the X-ray and UV luminosity of αox<−1.95\alpha_{ox}<-1.95 makes PSO167-13 a strong outlier from the αox−LUV\alpha_{ox}-L_{UV} and LX−LbolL_X-L_{\mathrm{bol}} relations. In particular, its X-ray emission is >6>6 times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by the unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness.Comment: Accepted for publication on A&

    The design and validation of the R1 personal humanoid

    Get PDF
    In recent years the robotics field has witnessed an interesting new trend. Several companies started the production of service robots whose aim is to cooperate with humans. The robots developed so far are either rather expensive or unsuitable for manipulation tasks. This article presents the result of a project which wishes to demonstrate the feasibility of an affordable humanoid robot. R1 is able to navigate, and interact with the environment (grasping and carrying objects, operating switches, opening doors etc). The robot is also equipped with a speaker, microphones and it mounts a display in the head to support interaction using natural channels like speech or (simulated) eye movements. The final cost of the robot is expected to range around that of a family car, possibly, when produced in large quantities, even significantly lower. This goal was tackled along three synergistic directions: use of polymeric materials, light-weight design and implementation of novel actuation solutions. These lines, as well as the robot with its main features, are described hereafter

    Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)

    Get PDF
    While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise

    A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf

    Get PDF
    We present the results of the monitoring campaign of the Type IIn supernova (SN) 2018cnf (a.k.a. ASASSN-18mr). It was discovered about ten days before the maximum light (on MJD = 58 293.4 ± 5.7 in the V band, with MV = -18.13 ± 0.15 mag). The multiband light curves show an immediate post-peak decline with some minor luminosity fluctuations, followed by a flattening starting about 40 days after maximum. The early spectra are relatively blue and show narrow Balmer lines with P Cygni profiles. Additionally, Fe II, O I, He I, and Ca II are detected. The spectra show little evolution with time and with intermediate-width features becoming progressively more prominent, indicating stronger interaction of the SN ejecta with the circumstellar medium. The inspection of archival images from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey has revealed a variable source at the SN position with a brightest detection in December 2015 at Mr = -14.66 ± 0.17 mag. This was likely an eruptive phase from the massive progenitor star that started from at least mid-2011, and that produced the circumstellar environment within which the star exploded as a Type IIn SN. The overall properties of SN 2018cnf closely resemble those of transients such as SN 2009ip. This similarity favours a massive hypergiant, perhaps a luminous blue variable, as progenitor for SN 2018cnf

    Data from: MHC-similarity and sexual selection: different doesn't always mean attractive

    No full text
    Females that mate multiply have the possibility to exert postcopulatory choice and select more compatible sperm to fertilize eggs. Prior work suggests that dissimilarity in major histocompatibility complex (MHC) plays an important role in determining genetic compatibility between partners. Favouring a partner with dissimilar MHC alleles would result in offspring with high MHC diversity and therefore with enhanced survival thanks to increased resistance to pathogens and parasites. The high variability of MHC genes may further allow discrimination against the sperm from related males, reducing offspring homozygosity and inbreeding risk. Despite the large body of work conducted at precopulatory level, the role of MHC similarity between partners at postcopulatory level has been rarely investigated. We used an internal fertilizing fish with high level of multiple matings (Poecilia reticulata) to study whether MHC similarity plays a role in determining the outcome of fertilization when sperm from two males compete for the same set of eggs. We also controlled for genomewide similarity by determining similarity at 10 microsatellite loci. Contrary to prediction, we found that the more MHC-similar male sired more offspring while similarity at the microsatellite loci did not predict the outcome of sperm competition. Our results suggest that MHC discrimination may be involved in avoidance of hybridization or outbreeding rather than inbreeding avoidance. This, coupled with similar findings in salmon, suggests that the preference for MHC-dissimilar mates is far from being unanimous and that pre- and postcopulatory episodes of sexual selection can indeed act in opposite directions
    • …
    corecore